avatar

mips/arm架构简述

MIPS架构简介

MIPS架构是一种采取精简指令集(RISC)的处理器架构

  • MIPS和MIPSEL是两种架构MIPS是大端序、MIPSEL是小端序。一般来说大端序列是主流的(和x86和arm相反),不过很多CTF题目都是小端序的。(大端调试需要在gdb和pwntools都特别设置,否则默认小端)
  • 不支持NX(即使编译选项添加了也没有用)不支持NX即函数的栈/bss都是可执行的,当我们的写入栈中的shellcode能够被执行,大大降低了利用难度。
  • 叶子函数和非叶子函数
    • 在MIPS体系架构下,函数分为叶子函数和非叶子函数。MIPS函数的调用过程与x86不同,x86中函数A调用函数B时,会将A函数的地址压入堆栈中,等到函数B执行完毕返回A函数时候,再从堆栈中弹出函数A的地址。而MIPS中,如果是叶子函数,与x86是不同的,函数的返回地址是不会压入栈中的,而是会直接存入寄存器$ra中。如果是非叶子函数(即函数中还调用了其他函数),则和x86类似,将地址存入栈中。
    • 另外Mips是没有栈底指针的,只有一个$sp指向栈顶,并且不会像x86那样通过pop或者push调整指针,而是采用偏移寻址来访问变量。非叶子函数如图所示,在函数头部会将调用函数的返回地址即$ra存放在栈底(偏移4字节),而在函数快结束时会重新将该值取去出来,放入ra。在这个间段内,如果覆盖了函数栈底,就能够控制程序的流程。

寄存器

MIPS 架构中共包含 32 个通用寄存器:

REGISTER NAME USAGE
$0 $zero 常量0(constant value 0)
$1 $at 保留给汇编器(Reserved for assembler)
$2-$3 $v0-$v1 函数调用返回值(values for results and expression evaluation)
$4-$7 $a0-$a3 函数调用参数(arguments)
$8-$15 $t0-$t7 暂时的(或随便用的)
$16-$23 $s0-$s7 保存的(或如果用,需要SAVE/RESTORE的)(saved)
$24-$25 $t8-$t9 暂时的(或随便用的)
$28 $gp 全局指针(Global Pointer)
$29 $sp 堆栈指针(Stack Pointer)
$30 $fp 帧指针(Frame Pointer)
$31 $ra 返回地址(return address)

MIPS32架构中定义了3个特殊寄存器。分别为PC(程序计数器)、HI(乘除结果高位寄存器)和LO(乘除结果低位寄存器)。在进行乘法运算时,HI和LO保存乘法的运算结果,其中HI存储高32位,LO存储低32位;而在进行除法运算时,HI保存余数,LO存储商。

汇编指令

指令 功能 应用实例
LB 从存储器中读取一个字节的数据到寄存器中 LB R1, 0(R2)
LH 从存储器中读取半个字的数据到寄存器中 LH R1, 0(R2)
LW 从存储器中读取一个字的数据到寄存器中 LW R1, 0(R2)
LD 从存储器中读取双字的数据到寄存器中 LD R1, 0(R2)
L.S 从存储器中读取单精度浮点数到寄存器中 L.S R1, 0(R2)
L.D 从存储器中读取双精度浮点数到寄存器中 L.D R1, 0(R2)
LBU 功能与LB指令相同,但读出的是不带符号的数据 LBU R1, 0(R2)
LHU 功能与LH指令相同,但读出的是不带符号的数据 LHU R1, 0(R2)
LWU 功能与LW指令相同,但读出的是不带符号的数据 LWU R1, 0(R2)
SB 把一个字节的数据从寄存器存储到存储器中 SB R1, 0(R2)
SH 把半个字节的数据从寄存器存储到存储器中 SH R1,0(R2)
SW 把一个字的数据从寄存器存储到存储器中 SW R1, 0(R2)
SD 把两个字节的数据从寄存器存储到存储器中 SD R1, 0(R2)
S.S 把单精度浮点数从寄存器存储到存储器中 S.S R1, 0(R2)
S.D 把双精度数据从存储器存储到存储器中 S.D R1, 0(R2)
DADD 把两个定点寄存器的内容相加,也就是定点加 DADD R1,R2,R3
DADDI 把一个寄存器的内容加上一个立即数 DADDI R1,R2,#3
DADDU 不带符号的加 DADDU R1,R2,R3
DADDIU 把一个寄存器的内容加上一个无符号的立即数 DADDIU R1,R2,#3
ADD.S 把一个单精度浮点数加上一个双精度浮点数,结果是单精度浮点数 ADD.S F0,F1,F2
ADD.D 把一个双精度浮点数加上一个单精度浮点数,结果是双精度浮点数 ADD.D F0,F1,F2
ADD.PS 两个单精度浮点数相加,结果是单精度浮点数 ADD.PS F0,F1,F2
DSUB 两个寄存器的内容相减,也就是定点数的减 DSUB R1,R2,R3
DSUBU 不带符号的减 DSUBU R1,R2,R3
SUB.S 一个双精度浮点数减去一个单精度浮点数,结果为单精度 SUB.S F1,F2,F3
SUB.D 一个双精度浮点数减去一个单精度浮点数,结果为双精度浮点数 SUB.D F1,F2,F3
SUB.PS 两个单精度浮点数相减 SUB.SP F1,F2,F3
DDIV 两个定点寄存器的内容相除,也就是定点除 DDIV R1,R2,R3
DDIVU 不带符号的除法运算 DDIVU R1,R2,R3
DIV.S 一个双精度浮点数除以一个单精度浮点数,结果为单精度浮点数 DIV.S F1,F2,F3
DIV.D 一个双精度浮点数除以一个单精度浮点数,结果为双精度浮点数 DIV.D F1,F2,F3
DIV.PS 两个单精度浮点数相除,结果为单精度 DIV.PS F1,F2,F3
DMUL 两个定点寄存器的内容相乘,也就是定点乘 DMUL R1,R2,R3
DMULU 不带符号的乘法运算 DMULU R1,R2,R3
MUL.S 一个双精度浮点数乘以一个单精度浮点数,结果为单精度浮点数 DMUL.S F1,F2,F3
MUL.D 一个双精度浮点数乘以一个单精度浮点数,结果为双精度浮点数 DMUL.D F1,F2,F3
MUL.PS 两个单精度浮点数相乘,结果为单精度浮点数 DMUL.PS F1,F2,F3
AND 与运算,两个寄存器中的内容相与 ANDR1,R2,R3
ANDI 一个寄存器中的内容与一个立即数相与 ANDIR1,R2,#3
OR 或运算,两个寄存器中的内容相或 ORR1,R2,R3
ORI 一个寄存器中的内容与一个立即数相或 ORIR1,R2,#3
XOR 异或运算,两个寄存器中的内容相异或 XORR1,R2,R3
XORI 一个寄存器中的内容与一个立即数异或 XORIR1,R2,#3
BEQZ 条件转移指令,当寄存器中内容为0时转移发生 BEQZ R1,0
BENZ 条件转移指令,当寄存器中内容不为0时转移发生 BNEZ R1,0
BEQ 条件转移指令,当两个寄存器内容相等时转移发生 BEQ R1,R2
BNE 条件转移指令,当两个寄存器中内容不等时转移发生 BNE R1,R2
J 直接跳转指令,跳转的地址在指令中 J name
JR 使用寄存器的跳转指令,跳转地址在寄存器中 JR R1
JAL 直接跳转指令,并带有链接功能,指令的跳转地址在指令中,跳转发生时要把返回地址存放到R31这个寄存器中 JAL R1 name
JALR 使用寄存器的跳转指令,并且带有链接功能,指令的跳转地址在寄存器中,跳转发生时指令的放回地址放在R31这个寄存器中 JALR R1
MOV.S 把一个单精度浮点数从一个浮点寄存器复制到另一个浮点寄存器 MOV.S F0,F1
MOV.D 把一个双精度浮点数从一个浮点寄存器复制到另一个浮点寄存器 MOV.D F0,F1
MFC0 把一个数据从通用寄存器复制到特殊寄存器 MFC0 R1,R2
MTC0 把一个数据从特殊寄存器复制到通用寄存器 MTC0 R1,R2
MFC1 把一个数据从定点寄存器复制到浮点寄存器 MFC1 R1,F1
MTC1 把一个数据从浮点寄存器复制到定点寄存器 MTC1 R1,F1
LUI 把一个16位的立即数填入到寄存器的高16位,低16位补零 LUI R1,#42
DSLL 双字逻辑左移 DSLL R1,R2,#2
DSRL 双字逻辑右移 DSRL R1,R2,#2
DSRA 双字算术右移 DSRA R1,R2,#2
DSLLV 可变的双字逻辑左移 DSLLV R1,R2,#2
DSRLV 可变的双字罗伊右移 DSRLV R1,R2,#2
DSRAV 可变的双字算术右移 DSRAV R1,R2,#2
SLT 如果R2的值小于R3,那么设置R1的值为1,否则设置R1的值为0 SLT R1,R2,R3
SLTI 如果寄存器R2的值小于立即数,那么设置R1的值为1,否则设置寄存器R1的值为0 SLTI R1,R2,#23
SLTU 功能与SLT一致,但是带符号的 SLTU R1,R2,R3
SLTUI 功能与SLT一致,但不带符号 SLTUI R1,R2,R3
MOVN 如果第三个寄存器的内容为负,那么复制一个寄存器的内容到另外一个寄存器 MOVN R1,R2,R3
MOVZ 如果第三个寄存器的内容为0,那么复制一个寄存器的内容到另外一个寄存器 MOVZ R1,R2,R3
TRAP 根据地址向量转入管态
ERET 从异常中返回到用户态
MADD.S 一个双精度浮点数与单精度浮点数相乘加,结果为单精度
MADD.D 一个双精度浮点数与单精度浮点数相乘加,结果为双精度
MADD.PS 两个单精度浮点数相乘加,结果为单精度

ARM架构简介

ARM架构使用了与Intel/AMD架构所不同的精简指令集(RISC)。

寄存器

  1. 子程序间通过寄存器R0~R3传递参数。这时,寄存器R0~R3可记作arg0~arg3。被调用的子程序在返回前无需恢复寄存器R0~R3的内容,R0被用来存储函数调用的返回值
  2. 在子程序中,使用寄存器R4~R11保存局部变量。这时,寄存器R4~R11可以记作var1~var8。如果在子程序中使用了寄存器v1~v8中的某些寄存器,则子程序进入时必须保存这些寄存器的值,在返回前必须恢复这些寄存器的值R7经常被用作存储系统调用号,R11存放着帮助我们找到栈帧边界的指针,记作FP。在Thumb程序中,通常只能使用寄存器R4~R7来保存局部变量。
  3. 寄存器R12用作过程调用中间临时寄存器,记作IP。在子程序之间的连接代码段中常常有这种使用规则。
  4. 寄存器R13用作堆栈指针,记作SP。在子程序中寄存器R13不能用作其他用途。寄存器SP在进入子程序时的值和退出子程序时的值必须相等
  5. 寄存器R14称为连接寄存器,记作LR。它用于保存子程序的返回地址。如果在子程序中保存了返回地址,寄存器R14则可以用作其他用途。
  6. 寄存器R15程序计数器,记作PC。它不能用作其它用途。当执行一个分支指令时,PC存储目的地址。在程序执行中,ARM模式下的PC存储着当前指令加8(两条ARM指令后)的位置,Thumb(v1)模式下的PC存储着当前指令加4(两条Thumb指令后)的位置

ARM与Intel寄存器对比:

ARM架构 寄存器名 寄存器描述 Intel架构 寄存器名
R0 通用寄存器 EAX
R1~R5 通用寄存器 EBX、ECX、EDX、EDI、ESI
R6~R10 通用寄存器
R11(FP) 栈帧指针 EBP
R12(IP) 内部程序调用
R13(SP) 堆栈指针 ESP
R14(LP) 链接寄存器
R15(PC) 程序计数器 EIP
CPSR 程序状态寄存器 EFLAGS

指令集

参见ARM汇编指令集汇总

文章作者: 0bs3rver
文章链接: http://yoursite.com/2021/03/30/mips-arm%E6%9E%B6%E6%9E%84%E7%AE%80%E8%BF%B0/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 0bs3rver的小屋